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Analytic solution of the reference interaction site model 
equation for a mixture of hard spheres and symmetric 
rigid molecules 
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Lvov Department of the Institute for Theoretical Physics, 
Ukrainian Academy of Sciences, 290005, Lvov, USSR 

Received 18 April 1988, in final form 20 September 1988 

Abstract. The analytic solution of the set of site-site Ornstein-Zernike equations within the 
Chandler-Andersen approximation for a mixture of hard spheres and symmetric rigid 
molecules is presented. Using the zero-pole approximation, the site-site radial distribution 
functions are calculated. 

1. Introduction 

Owing to the application of the site-site approach, great progress in the theory of 
molecular fluids has been achieved in recent years [ 1-31, This approach is based on the 
use of site-site distribution functions. The site-site radial distribution functions (SSRDF) 
are usually calculated from the set of site-site Ornstein-Zernike (ssoz) equations, 
introduced by Chandler and Andersen [4]. We may write them in the form 

h(k)  = S(k)c(k)S(k)  + S(k)c (k )ph(k )  (1) 
where the matrices c(k) ,  h (k ) ,  S (k )  and p are 

ht%(k) = (4x / k )  lox rh$(r) sin(kr) d r  

c;$(k) = ( 4 n / k )  1% rc$(r )  sin(kr) d r  
0 

Pi$ = P a 4 l d w p  

S$3(k) = & b [ L / 3  + (1 - S,) sin(kl3/(klt/3)1. 
Here c $ ( r )  and h:$(r) are the direct and the total correlation functions, respectively, 
of the sites a and b, belonging to molecules a and b ;  pa = N,/V, where N ,  is the number 
of molecules of sort a ;  and I &  is the intra-molecular distance between sites a and /3. In 
the case of symmetric homonuclear molecules the set of ssoz equations reduces to one 
equation [5] 

hsdk) = [ I +  ( n ,  - l)s(k>12css(4 + W [ l  + (a, - ~)s(k)lcs,(k)hss(k). (2) 
Here index s denotes the molecular site; p = N/V, where Nis the number of molecules; 
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n,=4 n, 2 

ns=3 

Figure 1. The models of the molecules. 

s ( k )  = sin(kl,)/(kl,); and n, is the number of sites in the molecule. Particularly n, = 2 
corresponds to dumb-bells, n, = 3 to triangular triatomics and n, = 4 to tetrahedral tetra- 
atomics (see figure 1). 

The special class of site-site models with hard-sphere site-site interaction can be 
separated out. Such models are called the reference interaction site models (RISM) [ 1-51, 
For RISM the total correlation function satisfies the exact condition 

hss(r)  = -1 r 0,s (3a) 
where os$ is the hard-sphere size. Similarly to the Percus-Yevick approximation for the 
hard-sphere model, the following closure for the ssoz equation was introduced [3,4] 

c,s(r) = 0 r > ass. (3b) 
The analytic solution of equation (2) combined with the closure relation (3) for the 

system of dumb-bells was obtained recently [6-111. The method of solution is based 
upon the Wiener-Hopf factorisation technique and generalises Baxter's method of 
solution of the usual Ornstein-Zernike equation for a hard-sphere system in the Percus- 
Yevick approximation [12,13]. For the ssoz equation (2), the Baxter function Q(r)  
contains an infinite series of exponentially damped oscillating terms, which have their 
origin in the poles of the function [l + s (k ) ] - I .  It was shown [S, lo], however, that for 
high densities one can neglect all these terms and obtain quantitatively good results. 
Such an approximation is called the zero-pole approximation (ZPA). 

The above analytic solution was generalised for the system of symmetric n,-atomic 
molecules [14]. The investigations carried out in [14] show that, in the case of triatomics 
and especially in the case of tetra-atomics, the results obtained in the ZPA become not 
so good and it is necessary to take into consideration the poles of the function [ 1 + 4k)I-l .  

The purpose of the present paper is to present the analytic solution of the set of ssoz 
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equations for a mixture of hard spheres and symmetric n,-atomic molecules (figure 1). 
For such a two-component mixture we can write this set of equations in the following 
form [15, 161 

where 
/I(’) ( k )  = w (k)c(’) ( k )  w ( k )  + w ( k )  c(’) ( k )  ph (’1 ( k )  (4) 

Ps = N/V pi  = N,/V. 
Here, indices i and s denote the hard sphere and the molecular site, respectively; Ni and 
N are the number of hard spheres and molecules in the system. 

The closure relation for the set of equations (4) in the case of equal size of hard 
spheres and molecular sites, a,, = a, = a,, = a, is given by 

h(‘)(r) = -1 r < a  

c(,~) (r) = O r > a. 
The present analytic solution of the set of equations (4) coupled by closure relation 

(6) is based on the generalisation of the method introduced in [6-111. 
The main results of the present paper were published in [16]. Recently for a mixture 

of hard spheres and dumb-bells with 1, = $0 the set of ssoz equations was solved in the 
ZPA by Cummings and Stell [17]. Using the numerical method of Lowden and Chandler 
[18] the SSRDF for a mixture of hard spheres and dumb-bells were considered in [19]. 

2. Wiener-Hopf factorisation 

The set of equations (4) can be conveniently written in dimensionless form as 

where the matrices c ( k )  and h(k)  are 
[ w - l ( k )  - c(k)][w(k) + h(k)]  = 1 

1 

c,m(k) = (6/4(r/rnJ1’2CNk) = 2 / S,m(r) cos(kr) d r  

S h ( 4  = w ? / r n * ) ” 2  1 t c j w  d t  

0 

h,(k)  = (6/n)( i7irm)’ /2hi~(k)  = 2 

Here 1 = (i, s), m = (i, s), rll = xNp3/6V, qs = nn,Na3/6V, and 

J/,(r) cos(kr) dr .  

I 

1 

Ja(r)  = 12(r7/qnz)”2 thg(r) dt. 
r 

(9) 

Owing to the finiteness of the functions w ( k )  and h(k)  for all real k ,  the symmetric matrix 
w-’(k) - c (k )  can be expressed as 

W ’ ( k )  - ~ ( k )  = QT(-k )Q(k) .  (10) 
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The elements of the matrix Q(k)  are analytic in the upper half-plane and the elements 
of the matrix QT ( - k )  are analytic in the lower half-plane. When k 3 it follows from 
(10) that Q(k)  + 1. Thus the inverse Fourier transformation of the matrix elements 
[l - Q(k>llm can be represented by 

12(T/Vm)1'2q/m(r) = (2xl-l [ a i m  - Q/m(k)l ex~( - ik r )  d k .  (11) 
--cc 

For r < 0, closing the integration contour round the upper half-plane we have 

q/m(r) = 0 r < 0. (12) 
Owing to the relation (10) the analytic continuation of the matrix Q ( k )  into the lower 
half-plane is defined by 

Q(k)  = [ Q ' ( - k ) ] - ' [ ~ ~ ~ ( k )  - ~ ( k ) ] .  (13) 
Thus, the elements of the matrix q(r )  can be represented as 

13 

where An are the roots of the equation 

where 

Differentiating with respect to r gives the set of equations for the functions hl:(r) 

y h g ( r )  = -q;m(r) - [ns(fims6/s)/12~sIa(L - r )  - risam.s[q/rn(r + L )  

- 4 i m ( Y  - L)1 + 12 c r p  q1,(f)(r - OhfL(,Or - ti> dt. (19)  
P i: 

When vi+ 0 it follows that ( 1 8 )  corresponds to a one-component molecular system 
[6-81, and when qs -+ 0 ( 1 8 )  corresponds to the Percus-Yevick approximation for a one- 
component hard-sphere system. 
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3. Derivation of the Baxter functions 

Once the functions qlm(r) are known, the set of equations (19) may be used to derive the 
total correlation functions hj?(r). For this purpose let us use the set of equations (19) at 
0 < r < 1. Owing to the closure relation (6) and to (14) for the functions qim(r) we have 
the set of differential equations 

q ; m ( r )  + a,mfi$[qis(r + L )  - 4 d r  - L)1 + [6",fis/12r1,16(r - L )  
cc 

= aim? + blm + Re 2 dj;) exp( -iAnr) = B/m(r)  
n = l  

where a 

a, = 1 - 12 2 q p  1 qIp( t )  d t  - 12qs Re 2 e{;)/(iA,) exp(- iAn) 
P n = l  

qip(t)tdr- 1 2 q s R e 2  ~ ~ ~ ) [ A ~ 2 - l / ( i A n ) ] e x p ( - i A , ~ )  
P n = l  

djk) = - - 1 2 q ~ i $ ) ~ ~ ~ ( i A ~ ) .  

The Laplace transform of the corresponding SSRDF is 
cc 

Flm(iAn) = J rexp(-i&r)[hj?(r) + 11 dr. 
0 

The boundary and discontinuity conditions on the functions qrm(r) are 
CD 

(22) 
q / m ( l )  = ~e 2 E{;) exp(-ikn) 

qk(L-1-  41,9(L+) = & f i s / m s .  

n = l  

To solve the set of equations (20) consider now two different cases: (a) t d L < 1 and 
(b )  4 d L < 2. 

3.1. C a s e ( a ) a < L < l  

Let us divide the interval 0 < r G 1 into three sub-intervals 

I = ( 0 , l -  L )  

4 ;i (Y) = B / i  (Y) 

I1 = (1 - L ,  L )  I11 = ( L ,  1). 
Consideration of the set of equations (20) in each of these sub-intervals gives 

(23) O < r d l  

r E 1  

r E I1 (24) 

q l ( r )  - fisc71s(r - L )  = B/s(r) - fi,q,(r + L )  r E 111. 

Using (23) and the second equation in (24) we have 

qr i (r )  = t ( r2  - l ) a l i  + ( r  - I)bli 
ic 

(25a) - Re 2 d(:)/(iA,>[exp(-iA,r) - exp(-iA,)] O < r d l  
n=  1 
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From the last equations in (24) it follows that 

qZ(r) + rii,2q,,(r) = B l ( r )  - risB/,(r + L) + f i h , ( r  + 2L) r E  I. (26) 

Now it is not difficult to obtain the expressions for the function q[,(r) when r E 111 
?) 

+fi, sin[ri,(r - L)] + tis cos[ri,(r - L)] 

,U/, = (dj;) + iA,ajy)) exp(iA,L). 

r E 111 (28)  
where 

The constantsfi,, ti, and el, can be evaluated using the boundary conditions (22) and 
continuity condition on the function q,(r) 

qj,(1 - L + b )  = q,(1 - L - 6 )  8 4  0. 

3 2. Case jb) b=s L < f 
Following the method proposed in [lo] let us divide the whole interval 0 < r < 1 into 
five sub-intervals 

I = (0 ,1 - 2L) I1 = (1 - 2L, L) I11 = ( L ,  1 - L) 
IV = (1 - L ,  2L) v = (2L, 1). (29) 
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q;s(r) - fid& - L )  = B,(r)  - f i s q d r  + L )  r E V .  (35) 
From (30) immediately follows the expression for qli (r)  

qr i ( r )  = &(r2 - l)ali + ( r  - l)bli - Re c$)/(iAn) [exp(-iA,r - exp(iA,)]. (36) 
n = l  

Considering equations (31), (33) and (35) and then (32) and (34) gives the following two 
independent differential equations 

&(r)  + 2fi:qiS(r) = Ba(r )  - fi,BL(r + L )  

+ f i ; [Bl , ( r  + 2L) + B k ( r )  - fi,ql,(r + 3L)] r E I  (37) 

(38) qL(r)  + fi,2ql,(r) = BL(r) - fi,[Bl,(r + L )  + fi,qls(r + 2L)] r E 11. 

Solution of these equations determines the functions qh(r) in the intervals I and I1 
respectively 

2. 

qrs(r) = 3r2al, + [L(ns - 2)/(n, - l)ah + bh]r + Re 2 exp(-iA,r) 
n= 1 

+ v b  + kl,  sin(t/Zfi,r) + p k  cos(V%,r> r E I  (39) 

qrs(r) = f i ; l [ ( f i ; l  - r - L)ak - b,] + Re at) exp(-iA,r) 
n = l  

+ U / ,  cos[fi,(r - 1 + 2L)] + wrs sin[fi,(r - 1 + 2L)] r E I1 (40) 

where 

/$) = [ti:@) exp(-3iAnl) - t i :d t )  exp(-2idnL) - fi,d$l exp(-iAnL) 

- dj;)(21i: - 2A2)][iAn(1i: - A;)]-'. 

Now using equations (31)-(35), it is easy to obtain the functions q,(r) for another three 
sub-intervals 

qrs ( r )  = -2L2(n, - 2)/(n, - 1)2al, + Re 
rr 

y t )  exp(-iA,r) 
n = l  

- t/Zk, cos[V%,(r - L)]  + t /Zp , ,  sin[V'%,(r - L)]  r E I11 (41) 

qk( r )  - fi;'[(r - L + fi;l)ul, + b,] + A;' Re  2 ,U!;) exp(-iAnr) 
n = l  

+ urs sin[fi,(r - 1 + L)]  - wl, cos[fi,(r - 1 + L)]  r E I V  (42) 

q&) = i r2als  + [bl, - La&, - 2)/(n, - 1)Ir + 2Lbi,(2 - n,>/(n, - 1) 
CO 
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yj;) = (dl;) - iA,/3j;)) exp(iA,L). 

The expressions for a$j and plfj are the same, as in case (a). To determine the constants 
of integration in (39)-(43) the boundary conditions (22) and continuity conditions on 
the function qis(r) 

(44) 
qis(l - 2 L  + S )  = q/,(l - 2L - S) 4/,(1 - L + S )  = qls(1 - L - S) 

qIs(2L + 8) = q1sP-L - 4 6 + 0  

must be used. 

can be evaluated from the equations, derived with the help of (21) and (11). 

determined by 1 + (n, - l ) s ( k )  = 0. It can be shown that for large n 

Expressions for the functions qLm(r) also contain the constants a/,, bl, and i$), which 

As follows from (14) the functions qim(r) contain an infinite sum of terms, which is 

A, L --- (2n + 2)n - i ln[(4n + 3)n/ (ns  - l ) ]  

and 

Q'(A,) -+ 1 n-, E. 

Using these conditions it is not difficult to prove the convergence of the series in (14) 
when qs # 0 and r > L. 

4. Zero-pole approximation 

In order to provide further calculations the infinite series for qim(r) when r > 1 must be 
terminated. As in the case of a one-component molecular system [7-111 consideration 
of the whole series in (14) is important only when 17, -+ 0. For sufficiently high values of 
qs one need take into account only the first few terms of the infinite series for qim(r) [8] 
or use the ZPA, due to which the whole series in (14) can be neglected [lo]. 

q i I ( r )  = i(r2 - l ) a / ,  + bil(Y - 1) 

In ZPA in view of (25) ,  (27) and (28) for 6 s L < 1 we have 

O < r < l  

q g ( r )  = (f i; '  - r - L)fi;'uIs - fi;'bLS +fis cos(6,r) - tis sin(6,r) r E  I (45) 

q iS ( r )  = +aIsr2 + b,r + el, r E  I1 

q o ( r )  + fi;'(r - L + f i ; ' ) ~ / ~  + fi;'bis +fis sin[fi,(r - L)] 

+ tis cos[fis(r - L ) ]  r E 111. 

Taking into consideration (21) ,  boundary conditions (22) and continuity conditions 
on the function qiS(r)  when r = 1 - L we find the set of linear equations for the 
constants a/,, b!,, ti,, f i s  and el,: 

$')A(') = R(1) 

ais = all (46) 

b/,  = bl! 

where X('j = (aL,, bi,, tl,, fi,, er,) and the elements of the matrices A(') and R(') are 
presented in the Appendix. 
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Considering the case when 3 G L < 4 and taking into account (36), (39)-(43) in the 
ZPA we find 

qi,(r) = i ( r2  - l)a, + bl,(r - 1) 

qk(r )  = irza,, + [L(n, - 2>/(ns - l)a, ,  + bl,]r + U,,  + kl, sin(VZfi,r) 

O < r S l  

+ p l ,  cos(V2 fi,r) r E 1  

qLs(r) = f i ,- ' [(f iF1 - r - L)a,, - b,] + U,, cos[fi,(r - 1 + 2L)] 

+ wis sin[fi,(r - 1 + 2L)]  r E I 1  

q jF(r )  = - 2 ~ 2 ( n ,  - 2)/(n,  - I ) ~ u / ,  - V2 /cl, cos[V5fi i , (r  - L)]  

+ V/2pls  sinLV2 fi,.(r - ,511 r E I11 

qis(r) = f i ; ' [ ( r  - L + f i ; l )aiS + b,] + U / ,  sin[fi,(r - 1 + L ) ]  

-wl, cos[h,(r - 1 + L ) ]  r E IV 

qls(r) = taer2 + [b,, - L(n, - 2) / (n ,  - l )ai ,]r  + (2 - n,)fiL1b,, + U / ,  

+ k,, sin[V5 fi,(r - ~ L ) J  - pl ,  cos[V5 fii,(r - ~ L ) J  r E V (47) 

and the constants a,,, b,,, uim, kim, p,,,,, uim, wIln can be determined from the set of 
linear equations 

X(2)A(2) = R(2) 

a/, = all (48) 

bl, = b/, 
where 
are presented in the Appendix. 

SSRDF glm(r)  = hj:(r) + 1 

g i m ( l + )  = f i s d m s [ ( l  - L12/2ais + ( 1  - L)b/s + eisl + a i m  + blm 

g / m ( l + )  = (ns - 1)amy{1/(ns - l)[(l - 2L + f i ~ ' ) a / s  + bihl - w/s/(2L)) 

= (a,,, b,,, ulS, k,,, pis ,  ulS, w,,) and the elements of the matrices A(2) and R(*) 

Finally, considering (19)  in the ZPA when r = 1 yields the contact values for the 

i < L < 1  

+ alm + b/m $ < L < $ .  

5. Site-site radial distribution functions 

Substituting into the set of equations (19 )  the expression for the SSRDF g,,(r) = 
h E ( r )  + 1 yields 

q;m(r) + fisdms[q/m(r + L )  - q/m(r - L)1+ 6ms6/mfisfi(r - L)/12rs - 7 

With the help of the Laplace transformation the set of equations (49)  can be written 



2900 M F Holovko and Yu  V Kalyuzhnij 

in the form 

J 1  

- q,J(r  - L)J}exp(-sr) d r  - B,(r) exp(-sr) dr .  r 
The set of equations (50) yields the following expression for the SSRDF 

and when s = iJbn gives the relation between FIM(iArJ and E{;,) 
- Fln1 (iA n 1 + 12 IC (vi ,  / r  I )  Qi, ( -a ,l F p m  ( i j L P l  1 = %n ( i  A n  ) / 1 2 h  / rl M 1 I/*. 

P 

This relation can be used for deterrnlnation of the constants d!;). 

L = f .  Combining equations (45), (51) and (52) we find 

12( q / qm ) 1'2glm ( Y )  = (2nir) - '  

To illustrate the method of obtaining the SSRDF let us consider the case when 

4 
c 17 

x exp[(j - 6)s/2]} exp(sr) d s  
5 

N s )  = P,(s> exp[(j - 5)s/21 

where expressions for the functions KI; (s) 

] "1  

in the Appendix. 
Using the following form for N ( s )  in (53) 

(53) 

and P,(s) (where j = 1 ,  . . . ) are presented 

we finally get the expressions for the SSRDF 
5 
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I I 
1 5  2 0  7.5 

Figure 2. The site-site radial distribution func- 
tions of a mixture of hard spheres and dumb-bells 
( L  = 9) at qs = 0.2 and q! = 0 (- . - -), vfl = 0.1 
( ,  . .), = 0.2 (- -), v, = 0.3 (---) 
andq,  = 0.4(---).Thecontactvaluesatq, = 0.4 
are gt,(lT) = 6.2, giS(l+) = 5.0 and gss(l-) = 3.9; 
and at q, = 0.3 isgJl-)  = 3.2. 

Figure 3. The site-site radial distribution func- 
tions of a mixture of hard spheres and dumb-bells 
( L  = +) at qr = 0.4. The legend for q, is the same 
as that of figure 2. The contact values at q, = 0.3 
are g,,(l+) = 8.0, g,,(l+) = 6.4 and gs5(ld) = 5.1: 
andat  q, = 0.2areg,,(l ') = 4.9andg,,(li) = 2.8. 

where sI are the roots of the equation P5(s)  = 0, a = &ml + m 2  + $m3 + 2m4 
4 

E-+ and x m , = n .  
b J  m i m ~ m 3 m ~ U  I =  1 

6. Results 

In figures 2-5 we present the SSRDF for a mixture of hard spheres with dumb-bells 
(figures 2 and 3) and for a mixture of hard spheres with tetrahedral tetra-atomics 
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,: I 

I 1 1 I 

. ,  
:' / .' . 

1 5 2 0 2 .5  
r 

Figure 4. The site-site radial distribution func- 
tions of a mixture of hard spheres and tetra- 
atomics ( L  = *) at v s  = 0.35. The legend for 7, is 
the same as that of figure 2. The contact values at 
q6 = 0.3 areg, , ( l+)  = 4.4 andg,(l-) = 3.2; and at 
1, = 0.2 is g12(l-) = 2.8. 

0 5L ......,. 

Figure 5.  The site-site radial distribution func- 
tions of a mixture of hard spheres and tetra- 
atomics ( L  = 4) at ?, = 0.45. The legend for is 
the same as that of figure 2. The contact value of 
g 2 ( r )  at = 0.2 is 3.6. 

(figures 4 and 5 ) .  The qualitative behaviour of the SSRDF gti (r)  and gss(r) is the same 
as in the case of one-component hard-sphere or one-component molecular systems. 
The radial distribution function g,(r) has some characteristic features of g J r )  as well 
as those of gii(r). Particularly it has a cusp at r = 1 + L. The contact values of the 
SSRDF gss(r) and gl,(r) are lower than those of g,,(r). In the case presented in figure 4, 
the contact value of the function gS,(r) becomes less than zero. This fact illustrates 
that the ZPA for such values of densities is not good. As was shown in [14] for the 
triatomic and tetra-atomic molecules, the ZPA overestimates the structure of the system 
and gives the physically meaningless jump discontinuity of the SSRDF gss(r) at r = 2L. 
The role of poles of the function [l + (n, - l)s(k)] increases with decrease in density 
and/or increase in the number of sites and/or increase in the molecular elongation 15. 
Results of calculations of the above system SSRDF taking into account the poles will 
be published elsewhere. Finally, in figure 6 we present a comparison of the distribution 
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1 I I I 
1.5 2.0 2.5 

I“ 

Figure 6. The radial distribution functions g J r )  of 
a mixture of hard spheres and dumb-bells (-), 
hard spheres and triatomics (---) and hard 
spheres and tetra-atomics ( ’  .) at qp = 0.5 and 
q, = 0.05. The intra-molecular distance L 
between sitesisi. Thecontact valuesareg,,(l+) = 
4.7(--),g,,(lT) =3.9(----)andgZ,(l+) =3 .4  
( . ” . ) .  

functions gii(r) for the systems with different shapes of the molecules at equal values 
of hard-sphere density (qi = 0.05) and molecular packing parameter q,” = V,p ,  
(q: = 0.5). Here Vnr is the volume of the n,-site molecule and giyi)(r)  is the sphere- 
sphere radial distribution function of a mixture of hard spheres and n,-atomic mol- 
ecules. Let us note that it is impossible to obtain coincidence of the curves for 
g!:i)(r) at arbitrary molecular density qs = 0 for each system and equal values of hard- 
sphere densities, Such coincidence can be obtained only if qJ” + 0. Thus the difference 
between these radial distribution functions shows the influence of molecular shape on 
the structure of the system. The following relations hold between the contact values 
and the values of the first maxima of the radial. distribution functions g!rs)(r)  for 
different n, (figure 6) 

gj?)(l+) >g!,”(l+) > g p ( l + )  

g!$?)(rM) > gi;’(rM) > g!;)(rM) 

1 I ‘\ ’ . - -.‘ 
Figure 7. Possible positions of two spheres in con- 
tact: ( a )  for a mixture of hard spheres with dumb- 
bells, (b)  for a mixture of hard spheres with tri- 
atomics and (c) for a mixture of hard spheres with 
tetra-atomics. The configurations in which three 
sitesofthemoleculeareatthesame timeincontact case of tetra-atomics. 
with a sphere occur more often in (c) than in (b) .  

Figure 8. Configurations that give the main con- 
tribution to the first maximum of the functions 
g!?(r ) ,  g! ; ) ( r )  and glp)(r) when q: + q,.  In this 
position the dumb-bells have the largest degree of 
freedom. The lowest degree of freedom is in the 
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where r%f is the position of the first maximum. These relations can be explained as 
follows. As is clear from figures 7 and 8 the largest average number of configurations 
which can be realised when the distance between two spheres is r = 1 (figure 7) or 
r = rM (figure 8) occurs for the mixture of hard spheres with dumb-bells and the lowest 
for the mixture of hard spheres with tetra-atomics. 

Appendix 
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A?), = 12q,{~3[12/(n, - 1)' - 41 + ~ ~ [ 3  - 4/(n, - 1 ) 7  - L + a  
+i(n,  -2)(1-2L)n,'[4(1-2L)Z - L / ( n ,  - 1)]}-3q, 

+ L(2 - n,)( l  - 4L2)/(ns - 1)) - 2q1 - 1 

A t ;  = 12q,{L3[6/(n, - 1) - 9 ] + L2[4 - 2/(n, - 1)] - 2L +$  

Ai:), = 12q,(l -2L) 
A(2) 4 , 2  - - 12q,[v%(n, -2)L2(C1 - l)/(n, - 1)* - 2(1- L)LS, / (n ,  - 1)] 

A~:),=12q,[v%(2-n,)S,/(n, -1)2 +2L2/ (n ,  - 1)-2L(l-L)C1/(n,- l ) ]  

Ai:), =24y,[(n, + 1)S2L2/(n, - 1)2 + (2 -n,)2L2C2/(n, - 1)2 

+ L(l - L)/(ns  - 1) - 2L2/(ns - 1 ) 2 ]  

+ (1 - 2L)L/(n, - 1) + 2L2/(ns - 1 ) 2 ]  

Af),=24q,[-L2(n, + 1)C2/(ns - 1)2 +2(2-n,)L2S2/(ns-1)* 
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Expressions for the functions Pj(s) and K&(s)  ( j  = 1 , 2 ,  . . .) which appear in the 
expressions for SSRDF (53) and (54): 

P,(S) = Pj,jsj + Pj,j-is'-l + . . . + P ~ , O  

Pj(S) = 0 
H;i)(s) = s exp(s/2){~$*j)sj + K$J-l)sj-1 + .  . . + K ; N )  

KK)(s) = 0 
K!)(s) = [(n,  - I ) ~  +s2]s e x p ( 3 ~ / 2 ) ( ~ ( , ' - ' ) s  + K ~ s O ) }  

K t )  (s) = 0 when j >  1 
~ $ j ) ( ~ )  = Kjp)si + K$jJ-llsj-l +. . . + K$$.O)  

K g ( s )  = 0 

when j > 5 

when j > 3 

when j > 4 

1 

p s s  = 1 P5,J = (Mj; -" )Mg+"))  
n=O 
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