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Abstract. The analytic solution of the set of site-site Ornstein-Zernike equations within the
Chandler-Andersen approximation for a mixture of hard spheres and symmetric rigid
molecules is presented. Using the zero-pole approximation, the site-site radial distribution
functions are calculated.

1. Introduction

Owing to the application of the site-site approach, great progress in the theory of
molecular fluids has been achieved in recent years [1-3]. This approach is based on the
use of site—site distribution functions. The site—site radial distribution functions (SSRDF)
are usually calculated from the set of site-site Ornstein—Zernike ($50Z) equations,
introduced by Chandler and Andersen [4]. We may write them in the form

h(k) = S(k)c(k)S(k) + S(k)e(k)ph(k) (1)
where the matrices c(k), (k), S(k) and p are

hib (k) = (4m/k) J'x rhés(r) sin(kr) dr
0

cthk) = (/0) [ reth(r) sinlr) dr (10
0

p?xlzi = paaabéwﬁ

Sap (k) = 04[0ap + (1 — 84p) sin(klis)/(klip)].
Here c%(r) and h%;(r) are the direct and the total correlation functions, respectively,
of the sites o and 3, belonging to molecules a and b; p, = N,/V, where N, is the number
of molecules of sort a; and /34 is the intra-molecular distance between sites o and . In
the case of symmetric homonuclear molecules the set of sS0OZ equations reduces to one
equation [5]
hos (k) =1+ (n, = )s(k)]cgs (k) +nsp[1+ (n, = Ds(k)less (k) (k). 2)

Here index s denotes the molecular site; p = N/V, where N is the number of molecules;
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Ns=h n,m2

ng=3

Figure 1. The models of the molecules.

s(k) = sin(kL)/(kl,); and n, is the number of sites in the molecule. Particularly 7, = 2
corresponds to dumb-bells, n; = 3 to triangular triatomics and n; = 4 totetrahedral tetra-
atomics (see figure 1).

The special class of site—site models with hard-sphere site~site interaction can be
separated out. Such models are called the reference interaction site models (R1sM) [1-5].
For risM the total correlation function satisfies the exact condition

hy(ry=—1 r < Oy (3a)

where o is the hard-sphere size. Similarly to the Percus—Yevick approximation for the
hard-sphere model, the following closure for the ss0Z equation was introduced [3, 4]

CSS (r) = 0 r > GSS‘ (3b)

The analytic solution of equation (2) combined with the closure relation (3) for the
system of dumb-bells was obtained recently [6-11]. The method of solution is based
upon the Wiener—Hopf factorisation technique and generalises Baxter’s method of
solution of the usual Ornstein-Zernike equation for a hard-sphere system in the Percus—
Yevick approximation [12, 13]. For the ss0z equation (2), the Baxter function Q(r)
contains an infinite series of exponentially damped oscillating terms, which have their
origin in the poles of the function [1 + s(k)]™!. It was shown [8, 10], however, that for
high densities one can neglect all these terms and obtain quantitatively good results.
Such an approximation is called the zero-pole approximation (zpA).

The above analytic solution was generalised for the system of symmetric n,-atomic
molecules [14]. The investigations carried out in [14] show that, in the case of triatomics
and especially in the case of tetra-atomics, the results obtained in the zpA become not
sogoodanditisnecessary to take into consideration the poles of the function [1 + s(k)] 1.

The purpose of the present paper is to present the analytic solution of the set of ssoz
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equations for a mixture of hard spheres and symmetric n-atomic molecules (figure 1).
For such a two-component mixture we can write this set of equations in the following
form [15, 16]

RO (k) = w(k)c® (k)w(k) + w(k)c® (k)ph® (k) 4)
where
R (k) hﬁi)(k)\ cP (k) (k)
(s) — (s) =

B <h§f)(k) wow) W <C§f’(k) ¥ (k)>

1 0 p;, O
wik) = <0 1+ (n,— 1)s(k)> P= <0 nsps) ©)
ps =N/V p:=N;/V.

Here, indices i and s denote the hard sphere and the molecular site, respectively; N;and
N are the number of hard spheres and molecules in the system.
The closure relation for the set of equations (4) in the case of equal size of hard
spheres and molecular sites, 0; = 0, = 0, = 0, is given by
hO(r) = -1 r<o
c9(r)=0 r>o.
The present analytic solution of the set of equations (4) coupled by closure relation
(6) is based on the generalisation of the method introduced in [6-11].
The main results of the present paper were published in [16]. Recently for a mixture
of hard spheres and dumb-bells with I, = ;0 the set of $s0Z equations was solved in the

zpA by Cummings and Stell [17]. Using the numerical method of Lowden and Chandler
{18] the ssrRDF for a mixture of hard spheres and dumb-bells were considered in [19].

(6)

2. Wiener-Hopf factorisation

The set of equations (4) can be conveniently written in dimensionless form as
[ (k) — c(Nw(k) + h(k)] = 1 @)
where the matrices c¢(k) and h(k) are

(k) = (6/)(11,) (k) = 2 [ S,,0) cos(r) dr
0

Bon(0) = (6/)1,1,) 0 = 2 | 1 (r) osthr) .
0
Here ! = (i,s), m = (i,s), n; = aN;c°/6V, n, = an,No3/6V, and

1
Sin) = 1201m,)" | 10 dr

. ©)
Tn(r) = 1201, | g0

Owing to the finiteness of the functions w(k) and k(k) for all real &, the symmetric matrix
w™ (k) — c(k) can be expressed as

wl(k) = c(k) = QT (=k)Q(k). (10)
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The elements of the matrix Q(k) are analytic in the upper half-plane and the elements
of the matrix Q7 (—k) are analytic in the lower half-plane. When k — o it follows from
(10) that Q(k)— 1. Thus the inverse Fourier transformation of the matrix elements
[1 — O(k)]; can be represented by

12071, (r) = 22" [ 181 = QW] exp(=ikr) dk. (1)
For r < 0, closing the integration contour round the upper half-plane we have
gm() =0 r<0. (12)

Owing to the relation (10) the analytic continuation of the matrix Q(k) into the lower
half-plane is defined by

Q(k) = [QT(=K)]"'[w (k) ~ c(k)]. ‘ (13)

Thus, the elements of the matrix g(r) can be represented as

ain(r) =Re 2 Eflexp(=ikyr)  r=1 (14)
where 4, are the roots of the equation

1+ (n, — Dsk) =0 (15)
and
& =107 (=4 0s[6(nm ) (1, = Ds' ()] L=ljo. (16)
From equations (7) and (10) we have

Q(k)[w(k) + h(k)] = [QT(=K)] ", 17)

Considering equation (17) in real space we obtain the set of equations for the functions
Jlm(r)

Jlm(r) = 12(71171m)1/2Q/m(7) + 12 E (7117];:)1’/2
p

« r+L
X <j qlp([)‘]pm(‘r—[‘)dt-f"6p56msﬁsf qlp(t) dt)
0

r—L
- (slsamsﬁsg(l‘ - r) (18)
where
1 x>0
f(x) = { i, = (n, — 1)/2L.
0 x<0

Differentiating with respect to r gives the set of equations for the functions A{)(r)
rh;fr?(r) = —ql/m(r) - [ﬁs(émsals)/lzns]é(L - r) - ﬁsams[qlm(r + L)

— g = D) + 230, [ (00 = oG (lr = o) . (19)
p 0

When n;— 0 it follows that (18) corresponds to a one-component molecular system
[6-8], and when 7, — 0 (18) corresponds to the Percus—Yevick approximation for a one-
component hard-sphere system.
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3. Derivation of the Baxter functions

Once the functions g,,(r) are known, the set of equations (19) may be used to derive the
total correlation functions 4{)(r). For this purpose let us use the set of equations (19) at
0 < » < 1. Owing to the closure relation (6) and to (14) for the functions g,,,(r) we have
the set of differential equations

ql,m(r) + 6)nsﬁ‘r[qls(r + L) - qls(r - L)] + [6m513ﬁs/12775]5(’ - L)

=a,,r + b,, + Re il d exp(—ik,r) = By, (r) (20)

where ©
@ =1-123 1, [ gy dr =120, Re I £[0/(i2,) exp(~ i)

P n=
b =122, fqlp(t)tdt_ 127, Re i (A7 —1/(iA,)]exp(—ik,) @Y

p n=

d) =—12n,EPF,, (i1,).
The Laplace transform of the corresponding SSRDF is

F,,(iA,) = f rexp(—iA,»)[A) (r) + 1] dr.

0
The boundary and discontinuity conditions on the functions ¢,,(r) are
am(1) =Re 2 £ exp(~il,) @)

QIS(Lk) - CI[S(L+) = 51:’75/127%-

To solve the set of equations (20) consider now two different cases: (a) 3 < L <1 and
b)isL<ik

3.1. Case(a) <L <1

Let us divide the interval 0 < r < 1 into three sub-intervals

I=(0,1-L) nm=(1-L,L) I = (L, 1).

Consideration of the set of equations (20) in each of these sub-intervals gives
qi(r) = By(r) O0<r=1 (23)
g (r) + Agq(r+ L) = B(r) rel
qis(r) = By (r) — A,q(r + L) rell (24)
ql,(r) — Agqu(r — L) = By (r) — figq,(r + L) r € 1L

Using (23) and the second equation in (24) we have
qs(r) = 3(r* = Day; + (r — )by,

— Re 2, di" /(it,)[exp(—id,r) —exp(—ik,)] 0<r=1 (25a)
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qi(r) = ¥r%ay, + byr = Re 2 1/(iA,)[d? — A& exp(—il,L)]
n=1
X exp(—id,r) + e re Il (25b)

From the last equations in (24) it follows that
qys(r) +fl§¢11s(")= B;s(r) _ﬁsBls(r+L)+ﬁ§qls(r+2L) rel. (26)

Solution of this equation can be expressed in the form

£

qu(r) = 7N (A7 — 7 = L)ay, — a7 'by + Re 2 ) exp(—ik,7)

n=1

+ fis cos(iigr) — ty sinA,r) rel (27)

a/E:) = [555’1)&? eXP(_ianL) - d;;,) (l)'n + A exp(_llnL))](ﬁsz - /1%!)71_
Now it is not difficult to obtain the expressions for the function g,,,(r) when r & 111

qu(r) =71 (r = L+ iy Ha, + A7 by + A7  Re 2 uf? exp(—ik,r)

n=1
+ fy sin[A,(r — L)] + t; cos[a (r — L)] relll (28)
where
i = (d) + ik, o) exp(ik, L).
The constants fj, 7, and e can be evaluated using the boundary conditions (22) and
continuity condition on the function g,(r)
g1 =L+98)=¢q,(1-L1L-9) 8—0.

32 Case(b)i=L <}$

Following the method proposed in [10] let us divide the whole interval 0 < r <1 into
five sub-intervals

=(0,1-2L) II=(1-2L,L) M =(L,1-1L)
IV=(1-L,2L) V=L, 1). (29)

In each of these sub-intervals the set of equations (20) have the following form

qi(r) = B(r) 0<r=1 (30)
qi(r) + Agqu(r+ L) = B(r) rel (31)
qi(r) + Agq(r + L) = Bi(r) rell (32)
qi(r) + As[qu(r + L) = qis(r = L)] = Bys(r) relll (33)

C]z/:(r) - ﬁsqls(r - L) = B/s(r) - ﬁsle(r + L) relv (34)
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qis(r) = Ayqu(r — L) = By(r) = Agq(r + L) rev. (35)

From (30) immediately follows the expression for g,(r)

qu(r) = 3> = Day + (r = Dby — Re X di” /(i) [exp(=id,r — exp(id,)]. (36)
n=1

Considering equations (31), (33) and (35) and then (32) and (34) gives the following two
independent differential equations

qis (r) + 273 g (r) = Bi(r) — A, B(r + L)
+ A2[By(r + 2L) + B (r) — Ai,q(r + 3L)] rel 37
qg(’)+ﬁ§qb(r)= BZs(r) _ﬁs[Bls(r+L)+ﬁSQZ:(r+2L)] rell (38)

Solution of these equations determines the functions g,{(r) in the intervals I and II
respectively

-]

g,(r) =4%%a, + [L(n, — 2)/(n, — Da, + b,]Jr + Re > B exp(—iA,r)
n=1

+ vy + kg sin(V2i,7) + py cos(V2A,r) rel (39)

%

qi(r) = a7 [(A7" = 7 = L)as — b] + Re 2 & exp(—ik,r)
n=1

+ uy cos[Aig(r — 1 +2L)] + wy sin[A,(r — 1 + 2L)] rell (40)
where
B = [AZEP exp(—3ik,L) — A2d{” exp(—2ik,L) — A, d{” exp(—iA,L)

—dP a3 = 20)][id, (A7 ~ A3)] 7.

Now using equations (31)-(35), it is easy to obtain the functions g,(7) for another three
sub-intervals

qi(r) = =2L*(n, — 2)/(n, — 1)%a, + Re 2, y{ exp(—ik,r)
n=1
— V2kj cos[V2h,(r — L)] + V2p,, sin[V2a,(r — L)] r€Ill (41)

q5(r) = A7 (r = L + A7 Day + bi] + A7 Re 2 uff exp(—ik,r)

+ uy sinf[Ai;(r — 1 + L)] — wy cos[i,(r ~ 1 + L)] reiv (42)
qls(r) = %rzals + [bls - Lals(ns - 2)/(”5 - 1)])‘ + 2Lb1s(2 - ns)/(ns - 1)

+Re X ¥\ exp(—iA,r) + v, — ky sin[V24,(r — 2L)]
n=1
— pis cos[ V27, (r — 2L)] rev (43)
where
A =A;1d® exp(ir, L) + [A; VA, (d + ik, B + B ] exp(id, L)
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v = (d —ir,BP) exp(id,L).

The expressions for a}s") and u{™ are the same, as in case (a). To determine the constants
of integration in (39)—(43) the boundary conditions (22) and continuity conditions on
the function g(r)

QIs(l =2L+ 6) = q1s(1 —2L - 5) q[s(]- -L+ 6) = qls(l -L- 6)
qis (2L + 8) = q,;(2L - 6) 6—0

(44)

must be used.

Expressions for the functions g,,,(r) also contain the constants @, b,, and &, which
can be evaluated from the equations, derived with the help of (21) and (11).

As follows from (14) the functions ¢,,(r) contain an infinite sum of terms, which is

determined by 1 + (n, — 1)s(k) = 0. It can be shown that for large n
AL =2n + %) —iln[(4n + 3)a/(n, — 1)]

and
Of'(r,)—1 n—

Using these conditions it is not difficult to prove the convergence of the series in (14)
whenn, #0andr> L.

4. Zero-pole approximation

In order to provide further calculations the infinite series for g,,,(r) when r > 1 must be
terminated. As in the case of a one-component molecular system [7-11] consideration
of the whole series in (14) is important only when n, — 0. For sufficiently high values of
n, one need take into account only the first few terms of the infinite series for g,,,(r) [8]
or use the zpA, due to which the whole series in (14) can be neglected [10].

In zpA in view of (25), (27) and (28) for $ < L < 1 we have

q,i(r)=%(r2—1)a,i+b,,-(r—1) 0<r=s1l
QIs(r) = (ﬁ;] -r- L)ﬁs_lals - fl;lbls +fls cos(ﬁsr) - tls Sin(ﬂsr) rel (45)
qi(r) =%a,r? + byr+ e rell

QIs(r) + ﬁ;l(r ~-L+ ﬁgl)als + ﬁglbls +f/s Sin[ﬁs(r - L)]
+ 1,5 cos[Ai(r — L)] re Il

Taking into consideration (21), boundary conditions (22) and continuity conditions
on the function g,(r) when r=1-— L we find the set of linear equations for the
constants a,,, by, t, fi; and ey

XWADL = RO
i = ay (46)
by =by

where XU = (ai, by, t, fs, €5) and the elements of the matrices A" and R are
presented in the Appendix.
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Considering the case when $ < L < } and taking into account (36), (39)-(43) in the
ZpA we find

qu(r) =3(r* — Day; + by(r — 1) O<r=1

qis(r) = ¥rtay, + [L(n, — 2)/(n, — Day, + byJr + vy, + ky, sin(V2 7i,r)
+ py cos(V2 A,r) rel

qis(r) = A7 (A — r — L)a, — by] + wy, cos[A,(r ~ 1 + 2L)]
+ wy sin[Ag(r — 1 + 2L)] rell

qi(r) = =2L*(n, = 2)/(n, — 1)2a;, — V2 k; cos[V2 i (r — L)]
+V2p, sin[V2 i, (r— L)] re 11l

qu(ry=A;(r— L+ Aa;Yay, + by + w sin[A(r ~ 1+ L)]
—wy cos[A(r — 1+ L)] relv

qi(r) =dayr? + [by — L(n, = 2)/(n;, — Daylr + 2 = n )i by + vy
+ kyy Sin[V2 A, (r = 2L)] = py; cos[V2 it (r — 2L)] FEV (47)

and the constants ay,,, b, Uiy Kims Pims Uims Win €an be determined from the set of
linear equations

XDAQ = RO
A = ay (48)
bls = bli

where X@ = (ay, by, v, kis, Piy» Ui, W) and the elements of the matrices A® and R®
are presented in the Appendix.

Finally, considering (19) in the zpA when r = 1 yields the contact values for the
SSRDF g,(r) = h{)(r) + 1

glm‘(lJr) = ﬁséms[(l - L)Z/Zals + (1 - L)bls + els] + Aim + b[m %< L<1
glm(1+) = (ns - 1)(3,7”{1/(715 - 1)[(1 —-2L+ ﬁs_l)als + bls] - wls/(2L)}
+ ay, + by isL<3i

5. Site—site radial distribution functions

Substituting into the set of equations (19) the expression for the SSRDF g, (r) =
RS (r) + 1 yields

q[m(r) + ﬁsams[qlm(r + L) - qlm(r - L)] + 6ms(5[mﬁs6(r - L)/12775 -r

+12> N, fx q,(O(r—1t)de— 122 n, Jm 4 (D) (7~ 0yt — 1) dt
P 0 P ,

+rglm(r) - 122 Np j.rqlp(t)(r—_ t)gpm(r_ t) dr=0. (49)
p 0

With the help of the Laplace transformation the set of equations (49) can be written
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in the form
Eim(s) =122 (1,/1) 201 () pm(5) = =i ()/12(1,1,) 2 (50)
V4
where

bn(9) = | rexp(=51g,,() dr
0

Oim(s) = 120111)" | exp(=57)q1(7) &7
0

2

1+L
201200077 = [ {a1n0) + Splaur+ L)

1
—qi(r — L)} exp(—sr) dr — j B, (r) exp(—sr)dr. (51)
1
The set of equations (50) yields the following expression for the SSRDF
c+ix
12000,) Zg1n() = @in " D [ 1065) = 115y 5) explor) ds (52)
P c—i%

and when s = i}, gives the relation between F,(ik,) and &

Im

‘F[m(ifln) +12 E (np/n/)l/zQA[p('—”Ln)Fpm(i)"n) = E';Im(l/x'n)/12(7717%?1)1/2
p

This relation can be used for determination of the constants d{”.
To illustrate the method of obtaining the SSRDF let us consider the case when
L = 3. Combining equations (45), (51) and (52) we find

i 4
1201,m,) g () = Qi)™ [ N7 (9) Z K

c—ix

x exp[(j — 6)s/2]} exp(sr) ds (53)

N(s) = 21 P;(s) exp[(j = 5)s/2]

where expressions for the functions K§/)(s) and Pi(s) (where j =1, ...) are presented
in the Appendix.
Using the following form for N(s) in (53)

N7(s) = exp(s) 20 (=1)"/Pi*i(s)

2 nlf(mytmytms ! my)PY(s)PE2(s)PEs(s)Pys(s) exp[—s(a + 1)]

{m}

we finally get the expressions for the SSRDF

5
12(71,) g (r) = (™1 2 2 lim d”/ds"

n=z01=15"8
4

X {(s —s5)" I (=1)" /PT(s) (mZ[} (11:11 P?i'j(s)>/<II m]-f)

j=1
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T T T

Figure 2. The site-site radial distribution func-
tions of a mixture of hard spheres and dumb-bells
(L=%)atn,=02andn,=0(----- ), = 0.1
C)m=02 (——), 7, =03 (---)
and 1, = 0.4 (——). The contact valuesat, = 0.4
are gii(1$) = 62: g15(1+) = 5.0 and gﬁ(l‘) ES 39’
and at, = 0.31is g,(17) = 3.2.

4

j=1

Figure 3. The site-site radial distribution func-
tions of a mixture of hard spheres and dumb-belis
(L =4%)atn, = 0.4. The legend for 7, is the same
as that of figure 2. The contact values at n, = 0.3
are g{17) = 8.0, g5(17) = 6.4 and g (1"} = 5.1;
andatn, =0.2areg;(1") =4.9and g, (1*) = 2.8.

x S KED ()6l —a— (+ /2] explslr—a =+ /2] (54)

where s, are the roots of the equation Ps(s) =0, o = $m; + m, + 3m; + 2m,

5 2

6. Results

and X, m; =n.

{m;} mymamamy>0 i=1

In figures 2-5 we present the sSRDF for a mixture of hard spheres with dumb-bells
(figures 2 and 3) and for a mixture of hard spheres with tetrahedral tetra-atomics
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g - . <
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Al . ' + | =
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) 0\\ | |
X \
\ L 4
\ 207\
= sk 1 :
N R
N7 e
} + +
b ~
_."/ B
L 1 " i L i i
15 2.0 2.5 15 20 25
r r
Figure 4. The site-site radial distribution func- Figure 5. The site-site radial distribution func-
tions of a mixture of hard spheres and tetra- tions of a mixture of hard spheres and tetra-
atomics (L = %) at n, = 0.35. The legend for 7, is atomics (L = §) at 0, = 0.45. The legend for 7, is
the same as that of figure 2. The contact values at the same as that of figure 2. The contact value of
n,=03areg(1")=4.4andg,(1") =3.2;and at gi(ryatn; =02is3.6.

n,=02isg(17) = 2.8.

(figures 4 and 5). The qualitative behaviour of the SSRDF g;(r) and g(r) is the same
as in the case of one-component hard-sphere or one-component molecular systems.
The radial distribution function g;(r) has some characteristic features of g (r) as well
as those of g;(r). Particularly it has a cusp at » = 1 + L. The contact values of the
SSRDF g,,(r) and g,(r) are lower than those of g,(r). In the case presented in figure 4,
the contact value of the function g(r) becomes less than zero. This fact illustrates
that the zpa for such values of densities is not good. As was shown in [14] for the
triatomic and tetra-atomic molecules, the zrA overestimates the structure of the system
and gives the physically meaningless jump discontinuity of the SSRDF g(r) at r = 2L.
The role of poles of the function [1 + (1, — 1)s(k)] increases with decrease in density
and/or increase in the number of sites and/or increase in the molecular elongation L.
Results of calculations of the above system SSRDF taking into account the poles will
be published elsewhere. Finally, in figure 6 we present a comparison of the distribution
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1.0p

g, {r)

Figure 6. The radial distribution functions g,(r) of
a mixture of hard spheres and dumb-bells ( ),
hard spheres and triatomics (~-~-) and hard
spheres and tetra-atomics (- - -) at n° = 0.5 and
n;=0.05. The intra-molecular distance L
between sitesis . The contact values are g;(1*) =
4.7(——). 817)=3.9(——--)and g;(1") = 3.4
r ().

functions g;(r) for the systems with different shapes of the molecules at equal values
of hard-sphere density (#;=0.05) and molecular packing parameter n; =V, o,
(n? =0.5). Here V,,_is the volume of the ng-site molecule and g{<(r) is the sphere-
sphere radial distribution function of a mixture of hard spheres and n-atomic mol-
ecules. Let us note that it is impossible to obtain coincidence of the curves for
g\")(r) at arbitrary molecular density 7, = 0 for each system and equal values of hard-
sphere densities. Such coincidence can be obtained only if #? — 0. Thus the difference
between these radial distribution functions shows the influence of molecular shape on
the structure of the system. The following relations hold between the contact values
and the values of the first maxima of the radial distribution functions g{s(r) for
different n, (figure 6)

gPA")>gdar)y>gar)
gP(rm) > g9 (rv) > g (rm)

A

Figure 7. Possible positions of two spheres in con-
tact: (@) for a mixture of hard spheres with dumb-
bells, (b) for a mixture of hard spheres with tri-
atomics and (c¢) for a mixture of hard spheres with
tetra-atomics. The configurations in which three
sitesofthe molecule are at the same time in contact
with a sphere occur more often in (¢) than in ().

Figure 8. Configurations that give the main con-
tribution to the first maximum of the functions
g3(r), g¥(r) and g (r) when 5! > 7,. In this
position the dumb-bells have the largest degree of
freedom. The lowest degree of freedom is in the
case of tetra-atomics.
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where ry is the position of the first maximum. These relations can be explained as
follows. As is clear from figures 7 and 8 the largest average number of configurations
which can be realised when the distance between two spheres is r = 1 (figure 7) or
r = ry (figure 8) occurs for the mixture of hard spheres with dumb-bells and the lowest
for the mixture of hard spheres with tetra-atomics.

Appendix

Expressions for the elements of the matrices AV, A®, R and R®, which are involved
in equations (46) and (48):

Al =dn, 120, (L1 - L)A; ' [4/(n, — 1) = 1] +3QL-1)(L* - L+1)} -1

A8 = 6m; = 6n,(2L — 1)

AL = — 125,47 cos[A, (1 — L)] + sin[A,(1 — L)] — 1}
Aﬂ”l = —12n,a; Ysin[#A,(1 — L)] —cos[A,(1 — L)] + 1}
Al = -129,2L - 1)

AT =125 {L(1=1)*/(n, = D[(2/(n, = 1) = H)L - 3]
+32L - 1)Q2L? =2L + 1)+ L/(n, — 1)
x [3(1 = L*) + L(2/(n, — 1) — 1)(1 = L]} — #n,
) =12n,[L(1 - L)a7 ' +3QL - 1)(L> - L+ 1)]-2n,~1
)= —12a7n,{(1 = A,) sin[A,(1 = L)] = [1 + A,(1 — L)] cos[A,(1 = L)] + 1}
b= 12477 n{[1 + A (1 = L)] sinfi (1 = L)]
+ (1 — Ay) cos[ia (1 — L)] + (n, — 1)/2 = 1}
Al =6n,(2L — 1)

ADY = L[4/, = 1)* = 3]+ L1 = 2/(n, - D] -4

A =L -a;' -1 AL = = sin[A, (1 — L)]

ALY = cos[f (1~ L)] A= -1

ARl=altQ+ast =L A=At Al =cos[i (1= 1)]
AL =sin[a,(1 - L)] Al =0

Als=nt-L2  A=nA7i-L

Afs=1 Al=0  AQ=-1

RY=-1 RM=0 (i=2,3,4) RY =—8,m,/12n,

AP, =4, — 12n,4L3[24/(n, = 1)* = 6/(n, = 1) = §]
+ L -8/(n,—1)>+2/(n,—1)+2]—L+%—-4L*(n,—2)
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x(1-2L)/(n, - 1)} -1
AP =6n, — 12n,[1 —2L + 2 — n,)(1 - 2L)A; ']

AQ) = -24n,(1-2L) AP = 120,877
AY = -12n,(1-C)a;! AZ = —12n,(S, - C; + D)i;!

AP = —12n,(1- 8, - Cy)A!

AP =120 {L°[12/(n, = 1)* = 4] + L*[3—4/(n, - 1)*] - L +1}
+3(n, —2)(1—-2L)n [3(1 —2L)* = L/(n, = D]} — 2,
A = 129{L°[6/(n,— 1) — ¥ |+ L*[4=2/(n,— 1)] - 2L +}
+LQ2—n)(1-4LY)/(n, - 1)} —2n, -1

AL =12n,(1-2L)

AZ =127, [VB(n, —2)L*(C, = 1)/(n, = 1)* = 2(1 = L)LS, /(n, — 1)]

AP =120,[VBQ2 —n,)S,/(n, — 1) +2L2 /(n,— 1) =2L(1 = L)C, /(n, — 1)]
AY =24n,[(n, + 1)S,L*/(n, — 1)+ (2 —n,)2L2C,/(n, — 1)*

+L(1—L)/(n, —1)=2L*(n, = 1)?]
AP =24n [~ L¥n, + 1)Cy/(n, = 1)* +2Q — n,)L2S,/(n, — 1)
+(1=2L)L/(n, —1)+2L*/(n, — 1)?]

AP =LY 2-4/(n,—1)* =2/(n,— )]~ (ny = 2)L(1 +2L)/(n, — 1) +}

APY=1+42L(2-ny))/(n,~1) A =1 APy =S,
All=c AA=-1 AR =0
APy =2L2(n, ~2)/(n,— 1)* — A] A =—h]" AL, =0
A =-V2e, A =V25, AQi=0  AP=1
Ay =02 AP =0  Afi=-1 AZ=0
AG =1 AQ=S,  Afl=-C
APy =1~ (n,~2)L/(n,~ 1) ASY=1+2L2~n,)/(n,~1)
Al =1 Ay =-S5, Al =-C, AZL=0 AFE=0
AP =202Q-n)/(n, = 1) APh=-h;t AD=0
AP =V2 AP =0 A =C, APy =S,
S, =sin[V2A,(1-2L)] C, =cos[V27a,(1—2L)]

S, =sin[A,(3L — 1)] C, =cos[7A,(3L - 1)]

RP=-1 RP =0 (i=2,3,4,5,6) RY =68,7,/12n,.



2906 M F Holovko and Yu V Kalyuzhnij

Expressions for the functions P(s) and K{)(s) (j=1,2,...) which appear in the
expressions for SSRDF (53) and (54):

P](S) = Pj‘]'Sj + Pj.j‘_lsj_l +...+ Pj‘O

Pi(s)=0 whenj>5
K{(s) = s exp(s/2{KYD s/ + K Ds~1 4+ + KGO}
Ki(s)=0 whenj >3
KD (s) = [(n, = 1)? +s%]s exp(3s/2){K (I Vs + K (-0}
KD (s)=0 when j>1
KQ(s) = KUDs/ + K/ Dsi-1 4. + KGO
KQ(s)=0 when j >4
1
Pss=1 Psy= > (MG ME*")
n=0
2
Psy= > (MG ME™) — MP YO
. o i s si
3 |
Pso= 2 (MEOME™) = X (MEME)
n=0 n=0
3 2
Psy= 2 (MEMY) — 2 (MG M)
n=0 n=0
2
Pso= 2 (MEMP — MEP M)
n=9_
1
P4,4 =1 Pss= 2 (Mff_n)SgM))
n=0
2 3 1

Piy= 2 (MEISE) = MPSD P,y =3 (MEPSD) = 2 (MG S+
n=0 n=0 n=0

2
Puo= 2 (MES = ME™S)
P
Pi;= M§;‘)L§}) + Ml(f)Lg‘)
1
Py, = EO (Ll(il—n)M§§+n) +M§1‘3_n)Ls(;+n) _Mlgss—n)ngan))
P
1 2

Pyy= 2 (L& M@ = LETI M@ — M@0 L0+ 4 20 (MG LG
n=0 n=

1 2
Ps,o — 2 (L!(i1—n)M§;+n) - Lg—n)ngl+n))+ 2 (Mg?—">L§:> —M§§"‘)Lg’))

n=0 n=0
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1
Py, =LPSY Py = 20 (L}=P8@*my—LPSP

2
Pro= 3 (LS4 ~LGSE)
n=0

1

P =LOL®-LPLY Pio= 2 (LUILE — LE-MLG*M)
n=0
1
K& = DOMY K82 = 3 (D¢ ME)-DP M)
i 1
n=0

1
K§ = 3 (D= ME™ = DY~ ME)

1
KO = 3 (DY MY = D M)

1
K§2=DPsp  KED =3 (DySE) - DPSY

1
K3 = 3 (DY-S4™ = DY)

n=0
1
Kz(il,l) — Dz('il)Lg) _Dg})LEE) Kgil.o) = 20 (Dgil-n) L§51+n) _Dgll—n)L(Lylﬂl))
"=
1
KGD = MO DY K10 = EO (MEPDWMY-MP DY
"=
1
KeO =MPDY  KY = 2 (M{™DE™) = MPDY
n=
2 1
KD = 3 (MP™0DG*) = 2 (M DE)
n=0 n=0
3 2

KD = 2 (MP™DY) = 3 (MG D)
n= n=0

2
KO = 2 (MDY = M D)
1
KEH=MPT®  K§Y =2 (METG) - MPTY

n=0



2908 M F Holovko and Yu V Kalyuzhnij

2 1
KD = 2 (M) = 2 (MEDTE)

2
KEO = 3 (MF T = MG TY)
I

1
KE? = LPDP-LPDY  KGY =3 (LY DE ~ LG DE*)
n=0
1
Kﬁf’(’) — 2 (Ll(ll—n)D§51+n) _Lgﬂz)Dlgsun))
n=0

1

Kgsl) = Lz(il) Tg) _LEI])TZ(SZ) KESLO) = 2 (L(,il_”) TS(}‘*”) — Lg}_”) Tl(sl‘*‘”))
n=0
ME;‘) =-1 Mgs) = [(ns - 1)_1 —%]als/(ns - 1) +f15 - bls/(ns - 1)
M(Z) == [(n - 1)t15 + a/s/(n: - 1) + 615(”.9 - 1)2]
1) = {[(I’l - 1) t— ]als bls}(ns - 1) M?_?) = _als(n: - 1)
2) = (n - 1){t15 Slﬂ[ (n - 1)] fls COS[%(HS‘ - 1)]} - als/(ns - 1)
Llsl) =" (ns - 1){als[(ns - 1)*1 +%] + bls} Lg)) == (ns - l)als

SO == 6, (n, — 1)
S = (n, = V{ [y sin[(n; = 1)/2] + #;; cos[(n; — 1)/2] + fi} + 2a;/(n, — 1)
S/(s1 = (nS - 1)(6115 +2b/s) 5550) = 2(”15 - l)als

T® = (n, = 1)*{f} cos[(n; —1)/2] — 1}, sin[(n, — 1)/2]} + a

T = (n, = 1)*[1/(n, = 1) + ¥]ay + by, TV = aj(n, —1)*

DY =—{a,[1+1/(n, = )] +2bj + (n, — Dt} DY =—[2a, + (n, — 1)*fs]
DV =—(n,— D) Ha,[1+1/(n, — 1)] +2b,} DY = —2a,(n, —1)?

M =-1 M =—[ha; +by] MP = b, MY = a,

LE,“ ==a;—by LE,Q) =Tdy DE,-” =—a;—by D%” =—ay
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